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Abstract. We have developed a theory of the quantum acoustomagnetoelectric effect due to 
Rayleigh sound waves in the presence of a quantizing magnetic field normal to the crystal- 
vacuum interface. Electrons are assumed to be specularly reflected at the sample surface. For 
this case we predict the appearance of an acoustoelecwic current along the ‘Hall’ direction 
orthogonal both to the magnetic field and to the wavevector of the Rayleigh sound. We also 
predict quantum oscillations ofthis current analogous to the de Haas-van Aiphen and Shubnikov- 
de Haas oscillations. We show thaf in the quantum strong-field limit the cunent ascill3tions cease 
CO be a small correction to the monotonic part of the current and can have a large amplitude. 

1. Introduction 

The Rayleigh sound waves propagating along the stress-free surface of an elastic medium 
have attracted much attention during the past two decades because of their utilization in 
acoustoelectronics. Considerable interest in such waves has also been stimulated by the 
possibility of their use as a powerful tool for studying the electronic properties of surfaces 
and thin layers of solids. 

It is well known that the propagation of Rayleigh sound waves in conductors is 
accompanied by the transfer of their energy and momentum to conduction electrons. This 
leads to the emergence of a longitudinal acoustoelectric effect, i.e. a stationary electric 
current running in a sample in the direction opposite to that of the wave. At present this 
effect has been studied in detail both theoretically and experimentally, and has found wide 
application in radioelectronic systems [I]. 

However, in the presence of a quantizing magnetic field the bulk acoustic 
waves propagating in a conductor can induce another effect, the so-called quantum 
acoustomagnetoelectric (QAME) effect. It has been predicted by Galperin and Kagan [2] 
and later observed in bismuth by Salaneck et al [3]. This QAME effect occurs under the 
condition of strong spatial dispersion, qf >> 1 (q is the modulus of the acoustic wavevector 
and f is the electron mean free path), when the quantum regime of sound absorption is 
realized. In this case the interaction between the eleclrons and the acoustic wave should 
be treated in terms of collisions of acoustic quanta with electrons. In a magnetic field H 
satisfying the conditions 

hw, >> T w, >> v (1) 

(0, = e H / m c  is the cyclotron frequency, T is the temperature in energy units and U is 
the frequency of the electron collisions), the absorption of acoustic quanta by electrons is 
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accompanied by the displacement of the cyclotron orbit centres in the direction perpendicular 
to both H and q (the ‘Hall’ direction). It leads to the appearance of the acoustoelectric 
current component in the same direction, and this is the essence of the QAME effect. 

As has been shown in [2,3] for spherical electron energy surfaces, the QAME effect can 
occur only in the Voigt configuration (Q I H )  when sound quanta induce inter-landau- 
level electron transitions. Meanwhile, such transitions are actually forbidden by the energy 
and momentum conservation laws. In fact, the inter-Landau-level transitions are connected 
with a change of energy by the amount hw,, which can be compensated neither by the 
energy of the absorbed phonon nor by the alteration of the electron motion energy along 
the magnetic field because of their smallness. Therefore, in a collisionless approximation 
(i.e. in neglecting electron relaxation processes), only intra-Landau-level transitions are 
allowed. Certainly, if we take into account electron scattering processes, inter-Landau-level 
transitions become possible too. However, their relative contribution to the sound absorption 
will be small by the parameter l / q l .  Thus, in the Voigt configuration the QAME effect due 
to bulk acoustic waves is absent in materials with a spherical Fermi surface (at least in the 
collisionless regime). 

As will be shown below, the situation is quite different for Rayleigh waves propagating 
in a magnetic field normal to the crystal surface. As a result of the Rayleigh wave 
spatial localization in the acoustic ‘skin layer’ (the thickness of which is of the order 
of the wavelength). the Rayleigh-phonon wavevector component normal to the surface is 
uncertain. Therefore. if the electron absorbs the Rayleigh phonon, the electron-momentum 
projection on the magnetic field is not conserved. The result is that intra-Landau-level 
electron transitions with a change of the position of the cyclotron orbit centre turn out to be 
possible even for the collisionless regime. These electron transitions account for the QAME 

effect. 
In this paper we present a theory of the QAME effect due to Rayleigh waves. We 

restrict our consideration to the case of specular reflection of electrons at a crystal surface. 
We assume that electron energy surfaces are spherical and consider only the deformation 
mechanism of electron-Rayleigh-phonon interaction. We also suppose that the mechanism 
that limits the electron mean free path is scattering on randomly distributed point defects 
(impurities) in the bulk of the crystal. Within the framework of this model we have analysed 
the magnetic-field dependence of the ‘Hall’ acoustoelectric current both for the quasiclassical 
case, when the splitting of electron levels in the magnetic field is considerably less than the 
Fermi energy EF. and for the quantum limit case, when hw, is in the order of EF. We show 
that the current experiences quantum oscillations when the magnetic field is varied. These 
oscillations are analogous to the de Haas-van Alphen oscillations of magnetic susceptibility 
and to the Shubnikov-de Haas oscillations of electric conductivity. In the quasiclassical 
case the considered oscillations have a sinusoidal form and are characterized by a small 
amplitude as compared with the monotonic part of the current. In the quantum limit case 
the oscillations become strong, so that the maximum value of the current can considerably 
exceed its minimum valuet 
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t It should be noted thal quantum oscillations of the Rayleigh wave absorption in a magnetic field normal to the 
crystal surface were predicted by Grishin and Kaner [4] and observed in Ga by Bellessa [SI. These oscillations. 
however, have m essentially non-sinusoidal form and belong to anolher type-the socalled CurevichSkobov- 
Firsov giant quantum oscillations. They can be observed only in materials wilh an extremely lvge electron 
relaxation time andlor a1 very high frequencies of acoustic waves 161. 



The QAME effect due to Ruyleigh sound waves 

Z Electron-Rayleigh-phonon interaction in a quantizing magnetic field 

Let us suppose that the Rayleigh wave of frequency oq is propagating along the surface 
of a conductor. For simplicity the latter can be viewed as an isotropic elastic medium. 
We choose the Cartesian coordinate system x ,  y .  z so that the O y  axis coincides with the 
wavevector q and the Oz axis is oriented along the magnetic field H .  We also suppose that 
the crystal occupies the half-space z 2 0, and that inequalities (I)  hold, i.e. the quantization 
of electron motion in a magnetic field is essential. 

We consider the most realistic case from the point of view of a low-temperature 
experiment, when 
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O q / v  =cRlql/v << 1 41 = q U F / V  >> 1 (2) 

where CR is the velocity of the Rayleigh wave and VF is the velocity of the electrons on the 
Fermi surface. The compatibility of these conditions is provided by the smallness of the 
sound velocity in comparison with the characteristic velocity of the Fermi electrons. 

If conditions (2) are satisfied, a macroscopic approach to the description of the 
acoustoelectric effect is inapplicable, and the problem should be treated by using quantum- 
mechanical methods. Therefore, we have at first to find the Hamiltonian ‘Het-p describing 
the interaction of the electrons with the Rayleigh phonons. We assume that the interaction 
is due exceptionally to the deformation produced by the Rayleigh waves. Strictly speaking, 
it is valid only if q8 >> 1 (6 is the thickness of the electromagnetic skin layer at a sound 
frequency for an anomalous skin effect), when we can disregard the conversion of the 
sound wave into an electromagnetic one. As shown in 171, in the opposite limiting case, 
q8 << 1, the electromagnetic contribution to the electron-Rayleigh-wave interaction becomes 
comparable with that of the deformation mechanism and, generally, it cannot be neglected. 
However, we will ignore it, since the character of the considered effect is determined not so 
much by the concrete mechanism of the electron-phonon interaction as by the peculiarity 
of the conduction electron dynamics in a magnetic field. On the other hand, it means that 
the results obtained below cannot claim quantitative exactness, and should be regarded as 
an order-of-magnitude estimate of the expected effect only. 

Using the well known expression for the displacement vector U(P, r )  in the Rayleigh 
wave [SI, we present the Hamiltonian following [9-1 I], in the form 

where 

(6) 

A is the deformation potential constant, Y+(r)  and W(r) are the electron field operators, 
U,‘ and U, are the creation and annihilation operators of the electron in the la) state, 
b, is the annihilation phonon operator, U=j(q) is the matrix element of the operator 
U = exp(iy-Klz), KI = (q2-wi/cf)”2 is the spatial attenuation factor of the potential part 

2 2 112 01 = (1 - CR/ 2 , ) 112 U, = (1 - CR/C,) 
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of the displacement field, cl and c, are the velocities of the longitudinal and the transverse 
bulk acoustic waves, po is the mass density of the medium and S = L, L,  is the surface 
area. 

Expression (3) is valid in the frame of reference moving together with the lattice. Our 
further evaluations are carried out just in this frame. Note that in obtaining (3) we have 
neglected the inertial term in the expression for the electron energy in the acoustic field 
because of its relative smallness (by the parameter CR/VF)  [12].  

We now determine the explicit form of the one-electron state [a) and I,9) between which 
there occur transitions induced by the Rayleigh phonons. A rigorous formula for the la) 
state can be obtained only in the case of specular reflection of electrons at a crystal surface. 
As will be shown below, the QAME effect is due to electrons that have a small momentum 
component pi in comparison with the Fermi momentum p ~ .  The reflection of such electrons 
at the surface can be regarded as specular even in normal metals in which pF - h / a  (a is 
the interatomic distance). It is even more true with respect to electrons in semimetals like 
Bi and to small electron groups in normal metals, since in this case there is an additional 
argument in favour of specular reflection, namely, a large de Broglie wavelength of the 
electrons on the Fermi surface as compared with the quantity a. Therefore, we can choose 
the boundary condition for the electron wavefunction in the form & ( T )  = 0 at z = 0 
according to which the surface z = 0 is an infinite potential barrier for the electrons. If the 
magnetic field is determined by the vector potential A in the Landau gauge A, = A ,  = 0, 
A ,  = H x ,  the solution of the Schriidinger equation satisfying the above boundary condition 
is written as 
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pa(r) = (~ /L ,L , ) ' / ~M~ - &)/aH1 exP(ip,y/fi) sin(pzz/h) (7) 

where a denotes the set of quantum numbers ( n .  ps. pz) ,  L ,  is the normalization length in 
the z direction, @ J ( x  - X . ) / a H ]  is the oscillator wavefunction centred at X ,  = - a i p y / h ,  
and aH = ( h / m o c ) ' / 2  is the magnetic length. The electron energy in the la) state is 

E, = E. + p t / 2 m  E. = (n + f )ho ,  (8) 

where pz can be varied from 0 to +w. 

U .  The result is 
Using expression (7) it is straightforward to evaluate the matrix elements of the operator 

U=&) p y  + hq)x(pZ - P:, pr + P:)[W, n ) h ( q a ~ / Z )  

+eh '  - n)Mnf , (qaH/2)  + e(n - n ' ) ~ , d q a ~ / 2 ) 1  (9) 

where 

K(Pz - P i .  P i  + P i )  = ( f i Z K l / L z ) ( [ ( P ~  - P;)' 4- hZK$' - [(P, -k f12K:1-'1 (10) 

M.,.(x) = (n!/n'!)'J'xn'-n e x p ( - ~ ~ / 2 ) ~ f - ~ ( x ~ )  (11) 

S(a, b)  is the Kronecker delta symbol, e ( x )  is the Heaviside step function, and L f - n ( x 2 )  
are the associated Laguerre polynomials, which are defined as in [13 ] .  

For strong magnetic fields where the inequality qaH << 1 is satisfied, the quantity 
M , , . ( q a ~ / 2 )  in the first term of (9) can be replaced by unity, while the other two t e y s  
(non-diagonal inn) can be neglected because of their relative smallness. Formally it follows 
from the Hilb-type asymptotic formula for M , , . ( q a ~ / 2 )  provided the argument of function 
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(11) is smaller than the inverse quantity of the subscript n [13]. But actually, according to 
the energy conservation law, inter-Landau-level transitions induced by acoustic quanta are 
completely impossible (see below). 

The function x ( p :  - p i ,  pz  + p i )  in (9) expresses the non-conservation of the electron- 
momentum projection on the magnetic field, which can be accounted for by the uncertainty 
of the Rayleigh-phonon wavevector component normal to the surface. For the bulk acoustic 
waves with q I H the matrix element of the electron transition would contain (instead 
of the x function) the Kronecker delta 6 ( $ ,  p i ) ,  which expresses the conservation of pr  
and makes impossible the sound absorption in the collisionless regime. In contrast, in the 
case of the Rayleigh waves, as seen from (9), pi # p i ,  and the prohibition on the sound 
absorption is removed. 

From (10) it is easy to see that x .  as a function of the transferred momentum, reaches 
its maximum at pz  - pi  = 0. The range where the x function essentially differs from zero 
is of the order of A K I .  Thus, the quantity f i ~ ,  plays, in a sense, the role of a transverse 
phonon momentum. Designating the change of the electron-momentum projection on the 
magnetic field by h A  and making use of the energy conservation law 

(n + ;)Amc + (p: /2m)  + hwq = (n' + f)hw, + (p:/Zm) 

we can conclude that in strong magnetic fields when KlaH << 1 (or qaH << l), the 
collisionless absorption of Rayleigh phonons is possible only if n = n'. It is easy to 
see that in this case the absorption process is due to the electrons with 

p z  = pjo) = ( m w q / A )  - ( h A / 2 ) .  

Because of the uncertainty of the quantity A ,  the uncertainty of p;O) (as well as its magnitude) 
will be of the order of mwq/Kl. Thus, in the case of the Rayleigh sound absorption there 
is no shidgent dynamic 'selection rule' in pr for electrons that interact most effectively 
with acoustic quanta. However, if conditions (1) and (2) are satisfied, the above-mentioned 
uncertainty of p;O) will still be less than the smearing ApF) of the quantity p;Ol owing to the 
electron heat motion (Apia) .-. mT/p!O) )  and to the collisions of electrons with scatterers 
(Apjo) - mv/Kl), and it will also be considerably less than p ~ .  In consequence, the 
'Hall' acoustoelechic current considered below will be created mainly by electrons with a 
small momentum component normal to the surface as compared with the Fermi momentum: 
Pz << PF. 

3. General expression for current density of the QAME effect 

The' DC electric current associated with the QAME effect arises in the second order of the 
electron-phonon interaction He_,. For an accurate estimate of the density of this current it 
is convenient to start with the Kubo formula for the stationary quadratic response to the AC 
field [14, 151: 

where VO is the normalization volume, j(r) is the current density operator, p(O) is the 
statistical operator at the initial moment of time, and 

He-&) = exp[(i/ft)Hot1Hte-, exp[-(i/h)HoiI Ho = H e  + 7ie-i. 
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Here the Hamiltonian ‘He describes the electron subsystem and ‘H.-i is the Hamiltonian of 
the interaction of electrons with randomly distributed short-range impurities located in the 
bulk of the crystal. The square and angular brackets in (12) denote the commutator and the 
averaging over the random position of the scattering centres, respectively, and the symbol 
Tr indicates the trace of electron and phonon variables. 

from an 
infinite past (at f = -CU) and considering the Rayleigh wave as a packet of coherent 
phonons with the delta-like distribution function N(k)  = (21r)~N,S(k - q ) / V ,  in the 
wavevector k space, it is not difficult to get the expression for the acoustoelectric current 
density component ( j&  = j ,  in the ‘Hall’ direction. Using (3) and (12) we find 
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Using the hypothesis of the adiabatic switching-on of the interaction 

where X is the operator of the x component of the cyclotron orbit centre, f(&) is the 
equilibrium Fermi-Dirac distribution function, and Nq = WV0/haqcR is the number of 
acoustic quanta in the strongly excited Rayleigh phonon mode lq) (W is the density of the 
acoustic energy flux). We suppose that only one phonon mode has been excited by the 
external perturbation as is the case in the actual experimental conditions (see, for example 
[S, 16-18]). 

Introducing the resolvents RI(&) = 1/(& - HO 5 io) of the operator ‘Ho and expressing 
the S functions in (14) by the formula a(& - ‘Ho) = [ R - ( E )  - Rt(&)]/2zi, we get after 
averaging over the random position of the impurities in (14) (as done by Skobov [19]) 

2ew, 
J(&) = --N,lCqlz~ I U ~ ~ ( ~ ) I 2 X , ~ I m G . ( & ) I m G ~ ( &  +hwq) (15) 

vo U*# 

where X.8 = X, - Xg and Ga(&) is the retarded one-particle Green function averaged over 
impurity positions 

G&) = (Rim(&))  = [E - E, + iu(~)/Z]-l. (16) 

Here U(&) is the probability of the electron scattering per unit time, which satisfies the 
equation obtained in [19]. However, for simplicity we will further regard the quantity U as 
independent of energy and consider it to be a phenomenological constant. Strictly speaking, 
this approximation holds under the following conditions: 

hoc (< (EFT)’” hu << T (17) 

which restricts the range of validity of the results obtained below by a quasiclassical case 
when electrons fill a large number of Landau levels (EF >> hw,) and the amplitude of the 
quantum oscillations of the electron collisions frequency is relatively small. In the quantum 
case (hw, - e) we generally cannot neglect the energy dependence of U. However we 
believe that the results obtained in the approximation U = const yield a correct qualitative 
treatment of the effect under consideration in this case as well. In this connection it 
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is worthwhile to note that the product of the imaginary parts of the one-particle Green 
functions in (15) arises as the result of the factorization of the two-particle Green function. 
The factorization holds at all energies except the small vicinity of the point E = E,,, i.e. 
except just that narrow range of the E energy in which the dependence V ( E )  is most essential. 

The obtained result for the ‘Hall’ acoustoelectric current, equations (13) and (15), has 
a form very close to the well known formula for the dissipative current along the electric 
field in the Shubnikov-de Haas effect. However, there is an essential difference between 
them, namely, in the latter the quantity Xu, is squared, while in (15) it is in the first 
power. It points to a different physical reason for the current rise in these two cases. In the 
formula of the dissipative current in the crossed electric and magnetic fields X& is due to 
the diffusive migration of the cyclotron orbit centres u.used by electron scattering. When 
there is no scattering the current along the electric field is absent. In contrast, the ‘Hall’ 
acoustoelectric current arises because of the lateral displacement (in the H x q direction) of 
the cyclotron orbit centres of the electrons upon the continuous absorption of the Rayleigh 
acoustic quanta and is non-dissipative in origin. In fact, it is easy to see that the ‘Hall’ 
current is not equal to zero even in the collisionless limit v + 0, when the imaginary parts 
of the Green function in (15) behave like 8 functions of energy. However, as will be shown 
below, in order to determine the amplitude and shape of the ‘Hall’ current oscillation peaks 
arising under magnetic field variations, it is important to take into account the collisions 
smearing the 6 functions. 

It should be noted that under ‘closed circuit conditions’ in  the direction of wave 
propagation apart from the considered ‘Hall’ current the current component (jac)y arises, 
which corresponds to the ordinary longitudinal acoustoelectric effect. Unfortunately, it is 
difficult to give an accurate estimate for this current component (which is dissipative in 
origin) using the presented formalism. We think, however, that the ratio (j.&/(jac)y will 
be of the order of the ratio of conductivities u~,./ayy, which is large for the degenerate 
electron gas by the parameter wJv.  

4. Quantum oscillations of the ‘Hall’ acoustoelectric current 

In the range of comparatively low sound frequencies (up << U) we can neglect the quantity 
hw, in the argument of the second G function in (15) and expand the difference of the 
Fermi functions in (13) by a small shift of their arguments. After substituting (9) and (16) 
into (15) the summation over n‘, p; and p y  is readily evaluated. Then, we change the 
summation over pr and pi  to integration over the dimensionless variables q = a e p r / h  
and q’ = af lp i jh ,  respectively. As a result, by introducing the dimensionless parameters 
Jp = EF/hOc, 1 = hw,/T,  r = v/2wc and the dimensionless variable r = &/RUC we find 
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Next we point out that under the integral sign over q' in (18) there are two rapidly 
varying functions of 4': d(q - 0') and D ( E ~ , ~ ,  - 5 ) .  The function d(a - q') has a maximum 
at q' = q with a width of the order of qaH. The maximum of the function D(E",,,* - C) 
is located at E . ~ ~ ,  = 5 and its width with respect to the variable q' is of the order of 
r'I2. The ratio of these two widths is determined by the parameter ( h ~ : / m ~ ) ' f l .  The 
estimates show that if conditions ( I )  and (2) are satisfied the parameter is small compared 
with unity, and, hence, the width of the d function is considerably less than the width of 
the D function. In contrast, the ratio dw/Dma determined by the parameter ( m ~ / h ~ f ) ~  
is very large compared with unity. Thus, in the case under consideration the d function is 
considerably 'sharper' than the D function. This enables us to take the D function outside 
of the integration sign over q' at the point of the maximum value of the d function. Then, 
the remaining integral over q' can be evaluated explicitly by means of Cauchy's residue 
theorem. As a result, the expression for j ,  takes the form 

m 
jac = ( ~ j o / l 6 ) ( r / h ) ' ~ o , / T ) ~ ( ~ f a ~ ) - ~  1 dC sech2[VC - <F)/2lF(c) 

where 

(19) 

We will carry out the further analysis of the expression (19) separately for the two 
limiting cases: the quasiclassical and the quantum one. 

4.1. The quasiclassical limit c u e  

In this case the spacing between Landau levels Eo, is considerably less than the Fermi 
energy E~ and it is convenient to make use of the approach elaborated by Sondheimer and 
Wilson [20,21] in the theory of magnetic susceptibility. 

It is not difficult to show that F(5) can be presented as 

where @(E",,,) is the inverse Laplace transformation of the auxiliary function 

F @ ) = 2 j m  9 (7 + $a$)-' exp( -h ,q )  dq. 
n=o 0 

In the range of strong magnetic fields where ( h / Z ) 1 / 2 K p H  << 1, we have 

ytim 
@(En,,,) = (I/4Hi)(H/2)1'z h-'/2sinh-'(h/2)exp(XE,.,)dh. (2.0) 

The singular points of the integrand in (20) are the poles I ,  = fi2rrl ( I  = 1,2,3, . . .) 
and the branch point h = 0. By cutting up the complex h-plane along the negative real 
axis and deforming the integral contour as indicated in figure 1 we can split @(E",,,) into 
two parts: a monotonic part determined by the integral on the loop round the cut line, and 
an oscillating part determined by the sum of residues in the poles. Similarly, the 'Hall' 

y-im 
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Figure 1. The original contour for the integral appearing in equation (20) is indiwled by the 
vertical line. This contour is deformed into ule set of circles around lhe poles. which are denoted 
by crosses. and into the loop around the cut line along the negative real ais .  

acoustoelectric current is also decomposed into two parts: monotonic (jy) and oscillating 
( jE), After straightforward calculations we get 

For weak magnetic fields or for comparatively high temperatures (2n2/h >> 1) the 
oscillations actually vanish because of the exponential decrease of terms of the series in 
(22). 

In the region of intermediate magnetic fields ( 2 x 2 / k  - 1) the order of magnitude of 
the 'amplitude of the oscillations is determined by the first terms of the series in (22) for 
which 1 - 1. Inthis case we obtain the following estimate: 

jr/jp - @wc/2e,)'/2. (23) 

Hence, the amplitude of the oscillating part of the current density is small compared with 
the monotonic part. 

Finally, for skong magnetic fields (2H2/h < 1) the exponential decrease of terms in 
the series (22) begins only from I > lo = min(k/2n2, oc/nu) and the amplitude of the 
oscillations is determined by the sum of a large number of harmonics in (22) for which 
Zs21/,l - 1. The number of such terms is of the order of magnitude of the same lo. 
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Therefore, compared with the former estimation (23), there appears an additional factor 
l;‘/’b - (ho,/T)’/’, so that we have 
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jz/jp - (hoc/ T)”2(hoc/2&F)”z. (24) 

The ratio is small on account of the first of the conditions in (17). 
Thus, in the quasiclassical limit case the ‘Hall’ acoustoelectric current can experience 

only smooth sinusoidal oscillations of the Shubnikov-de Haas type. However, as we will 
show further, the situation changes in the quantum limit case when Eo, - E F  and the 
electrons fill only the lower Landau levels. 

4.2. The quantum limit case 

In this case it is worthwhile to change the integration order in (19) by using the continuity 
of the integrand. i.e. first integrate over < and then over q. As already mentioned the D 
function has a maximum at cntn = 5 .  The characteristic scale of variation of this function 
is small compared with unity. At the same time, the function sechz[A(C - (F)/2] varies 
smoothly on the interval of A< - 1 and, therefore, we can take it outside the integral sign 
over < at the point = E . , ~ .  Then, the remaining integral over 5 can be calculated easily, 
and provided the condition r << 1 is satisfied we obtain 

jac = (aZi~/2)(ho,/T)(20,/~)(~,/2w,)3(~~a~)-3 
m / dv v2(sz + K,”.:)-’ 

n o  

X (1 + r / X E n , d  sech21Ucn,, - C F ) / ; ? ~ .  (3) 

If the magnetic field is such that one of the Landau levels gets into the thin heat layer 
(of the order of T )  near the Fermi level, the quantity j,, reaches a maximum value, which 
can he estimated from (25) as 

jr N CZ’ jOfio,/ T)’/* ( 2 0 ~  U) (oq/20~)3  ( ~ l a H ) - ~ .  (26) 

Here the numerical factor 

c = ( x / z ) ] / * ( I  - 23/2)t(-1/2) N 0.5 

where ((-112) = -0.2079 is the value of the Riemann zeta function { ( x )  at the point 

If the magnetic field is such that all values of n + f are far from (F the current density 
x = -1/2 [22]. 

j ,  reaches its minimum value 

j,”” = z2 j0(2w~/u)(o,/~o,)~(~,aH)-~. (27) 

Then, according to (26) and (27), we obtain 

jay/jF - c ~ ~ w , / T ) ‘ / ’ .  (28) 

In semimetals in which the effective electron mass m is small compared with the free- 
elechon mass mo. the ration (28) can be quite large. For instance, for bismuth (m = O.Olmo) 
at H = 50 kOe and T = 1.2 K we have jF/j$ - IO. By the order of magnitude, this 
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estimate is true also for normal metals if the QAME effect is due to the interaction of the 
Rayleigh wave with electrons belonging to the small ‘pockets’ of the Fermi surface. 

Thus, we see that in the quantum limit case the ‘Hall’ acoustoelecaic current can 
experience strong oscillations that are periodic in 1/H with period equal to that of the de 
Haas-van Alphen and Shubnikov-de Haas oscillations A(l/H) = eh/mc&p Here we will 
not consider the shape of the oscillation peaks since in the quantum limit case the obtained 
formula (25) for jac is purely an estimate because it ignores the magnetic-field dependence 
of the quantities v and EF. However, we believe that in the range of small quantum 
numbers n the shape of the oscillation peaks will be sinusoidal as in the quasiclassical 
case. In this connection we note that it is just the same form of oscillation as observed in 
most experiments on sound absorption in a magnetic field when the condition w, < U is 
satisfied [6]. 

5. Conclusions 

The main results of this paper can be summarized as follows. 
We have shown that in the case of spherical electron energy surfaces the absorption of 

Rayleigh acoustic quanta by conduction electrons is accompanied by the displacement of 
the cyclotron orbit centres in the direction perpendicular both to the magnetic field H and 
to the wavevector q of the Rayleigh sound. It leads to the increase of the QAME effect, i.e. 
of the DC acoustoelecnic current in the ‘Hall’ direction H x q. The effect occurs already 
in the collisionless regime of Rayleigh sound absorption and is impossible under analogous 
conditions for bulk acoustic waves. 

Our analysis shows that if the magnetic field strength is varied the ‘Hall’ acoustoelecaic 
current experiences oscillations with a period characteristic of the de Haas-van Alphen 
and Shubnikov-de Haas oscillations. In the most realistic case of low sound frequencies 
(wq << U) the oscillation peaks have a sinusoidal shape and their relative amplitude grows 
with the increase of the magnetic field strength. In the quantum limit case when the electron 
level splitting in the magnetic field is of the order of the Fermi energy, the current oscillations 
cease to be a small correction to the monotonic part of the current and can have a fairly 
large amplitude of the order of @w,f T)’ l z .  

In conclusion, we make some numerical estimates of the order of magnitude of the 
considered effect. Making use of (4)-(6) and (26) and the parameters of Bi (m = O.Olmo, 
A = 5 eV, po = 10 g cmT3, cr = 2 x los cm s-’, CR = 8 x lo4 cm s-’ and U = lo9 s-’) 
at H = 50 kOe, T = 1.2 K, W = 0.01 W cm-’ and wp = le s-’, we get jay = 0.1 @A 
cm-’, which is not difficult to measure by means of standard techniques. Similarly, we 
obtain jmm=0.6+Acm-2forGa(m =,0.6mo,A = 10eV,p0=6gcm-~,c l  =5x105cm 
s-I ,and Q = 2.4 x lo5 cm s-’ [5]) at H = 100 kOe and the same meanings of the other 
parameters. However, in this case jgax/jE N 2. 

The effect considered can be utilized in studying electron-Rayleigh-phonon interaction 
as well as for determining the parameters of the electron energy spectrum. Besides, since 
the diffusiveness of electron scattering at the crystal surface will smear the oscillation peaks 
of the ‘Hall’ acoustcelechic current, the form of dependence of j,(H) may allow some 
qualitative conclusions to be made concerning the character of electron reflection at the 
surface. 
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